
TB 13.8 Rotating Star 01-20-18 
N. T. Gladd

Initialization: Be sure the file NTGUtilityFunctions.m is in the same directory as that from which this

notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the

right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate

initialization cells.

SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Purpose
This is the 3rd in a series of notebooks in which I work through material and exercises in the magisterial

new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of

any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises. See TB

13.4 Polytropes 01-01-18 for more discussion of this project.

Analysis and solution
Part (a)  

Consider a rotating axi-symmetric star



and describe it’s dynamics using a cylindrical coordinate system.

Force balance on a fluid element at P involves the gravitational force and centrifugal force
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z

FG
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M

forces on fluid element

∇P(R, z)

ρ(R, z)
= FG(R, z) + FC(R, z) = -

G M

R2 + z2
r + Ω(R, z)2 RR ≡ Geff(R, z) (1)

where it has been assumed that the stellar mass is concentrated at the origin. Define the right hand

side to be an “effective” gravitational force. Can the centrifugal force be represented as a potential?

That requires that it be a conservative force, one for which the curl vanishes. 

∇ ⨯ FC(R, z) = ∇ ⨯ Ω(R, z)2 RR = 0 (2)

In detail

CurlΩ[R, z]2 R, 0, 0, {R, ϕ, z}, "Cylindrical"

0, 2 R Ω[R, z] Ω(0,1)[R, z], 0

If the centrifugal forces is conservative, Ω cannot depend on z.

Ω = Ω(R) (3)

which corresponds to rigid rotation with constant angular momentum on cylindrical surfaces.  A represen-

tative surface with streamlines is shown
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In this case

Geff(R, z) = -∇ Φeff(R, z) =
∂Φeff(R, z)

∂R
R +

∂Φeff(R, z)

∂z
z (4)

where, in particular,

Φeff(R, z) = -
G M

R2 + z2

+
Ω(R)2 R

2
(5)

Then 

∇P(R, z)

ρ(R, z)
= Geff(R, z) = - ∇ Φeff(R, z) (6)

implies that the effective gravitational field is everywhere orthogonal to the surfaces of constant pres-

sure (isobars).  For  some nominal  parameters the isobars and field  lines are shown (details  of  plot

generation below). Note that this result is independent of choice of equation of state.
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Figure 1)  Nominal parameters are M = 1, G = 1, Ω = 2

Next, note that

∇P(R, z)

ρ(R, z)
=

1

ρ(R, z)

∂P(R, z)

∂R
R +

1

ρ(R, z)

∂P(R, z)

∂z
z = -

∂Φeff(R, z)

∂R
R -

∂Φeff(R, z)

∂z
z (7)

and further that

dP(R, z) =
∂P(R, z)

∂R
dR +

∂P(R, z)

∂z
dz (8)

So

dP(R, z)

ρ(R, z)
=

1

ρ(R, z)

∂P(R, z)

∂R
dR +

1

ρ(R, z)

∂P(R, z)

∂z
dz =

-
∂Φeff(R, z)

∂R
dR -

∂Φeff(R, z)

∂z
dz = -dΦeff(R, z)

(9)

or

dP(R, z)

ρ(R, z)
= -dΦeff(R, z) (10)

This expression indicates that  the surfaces for  which Φeff(R,  z)  = constant  (equipotentials)  are also

surfaces for which P(R, z) = constant (isobars).
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As to von Zeipel’s theorem. If a barotropic equation of state is assumed

P(R, z) = P(ρ(R, z)) ⇔ ρ(R, z) = ρ(P(R, z)) (11)

Then 

dP(R, z)

ρ(R, z)
=

∂P(ρ)

∂ρ

dρ(R, z)

ρ(R, z)
= - dΦeff(R, z) (12)

Thus, surfaces for which ρ(R, z) = constant (isopycnics) also correspond to equipotentials.

or

1

ρ(R, z)
= -

dΦeff

dP(Φeff)
⇔ ρ(R, z) = ρ(Φeff) (13)

For a barotropic equation of state, the constant density surfaces (isopycnics) correspond to the constant

pressure surfaces (isobars) and the constant potential surfaces (equipotentials). 

I  feel  the  BT’s  statement  of  part  (a)  of  the  problem is  somewhat  misleading  by  implying  that  the

barotropic equation of state is the key assumption. 

To me, the logic is that the assumption of a conservative form for the centrifugal force by itself leads to

both constant  angular  moment on cylindrical  surfaces and that  isobars coincide with equipotentials.

Assuming a barotropic equation of state just leads to the additional result that isopycnics also coincide

with the equipotentials.

Confused about this, I did some web research and found the following. 

In the paper Effects of Stellar Rotation on p-mode frequencies, M. J. Goupil, in the book The Rotation of

the Sun and Stars, edited by J-P Rozelot, I found the succinct statement

Part (b)

The Bernoulli function is

6     TB 13.8 Rotating Star  01-20-18.nb



B =
v2

2
+ h + ΦG (14)

For the case of rigidly rotating cylinders v = Ω R, and the first and third terms can be combined into the

effective potential defined in Part(a).

B =
(ΩR)2

2
+ h + ΦG = h + Φeff (15)

Along a streamline

dB = v · ∇B

B will be a constant of the surfaces of constant angular momentum if dB = 0, and that requires that ∇B =

0

∇B = ∇h + ∇Φeff = ∇h (16)

since ∇Φeff = 0 is  known from part (a). So — is ∇h = 0?

Consider the gradient of h

∇h =
∂h

∂x
x +

∂h

∂y
y +

∂h

∂z
z (17)

From thermodynamics, h = h(P, s). Further, for a barotropic equation of state P = P(ρ) or ρ = ρ(P). Thus

h = h(ρ, s).

dh = T ds +
dP

ρ
(18)

If it is given that entropy is constant on a surface of constant angular momentum, then ds = 0 and

h = h(ρ) (19)

For the barotropic equation of state, h(ρ) is defined as

h(ρ) ≡ 
dP(ρ

˜
)

ρ
˜ = 

∂P(ρ
˜
)

∂ρ
˜

d ρ
˜

ρ
˜ (20)

which is sometimes called the “pressure potential.” Then

∂h

∂ρ
=

1

ρ

∂P

∂ρ
(21)

With this expression
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∇h =
∂h

∂ρ

∂ρ

∂x
x +

∂h

∂ρ

∂ρ

∂y
y +

∂h

∂ρ

∂ρ

∂z
z

=
1

ρ

∂P

∂ρ

∂ρ

∂x
x +

1

ρ

∂P

∂ρ

∂ρ

∂y
y +

1

ρ

∂P

∂ρ

∂ρ

∂z
z

=
1

ρ

∂P

∂x
x +

1

ρ

∂P

∂y
y +

1

ρ

∂P

∂z
z

=
1

ρ
∇P

In Part(a) it was shown that isobars and surfaces of constant angular momentum coincide. Thus

∇h =
1

ρ
∇P = 0 (23)

and B is shown to be a constant on surfaces of constant angular momentum.

Appendix A - Construction of visualizations
The rotating star
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Module{O = {0, 0, 0}, x = {1, 0, 0}, y = {0, 1, 0},

z = {0, 0, 1}, range, axes, rotationArrow, CyltoCar, Axis, G},

CyltoCar[R_, θ_, z_] := CoordinateTransform[

"Cylindrical" → "Cartesian", { R, θ, z}];

Axis[OO_, P_, lab_, mult_, color_] :=

{Directive[color, Thick], Line[{OO, P}], Text[Stl[lab], mult P]};

axes = With[{mult = 1.2, color = White},

Axis[O, #〚1〛, #〚2〛, mult, color] & /@ {{x, "x"}, {y, "y"}, {z, "z"}}];

range = 1.2 {{-1, 1}, {-1, 1}, {-1, 1}};

rotationArrow = With[{R = 0.2, θ = π / 4, z = 1.1, δθ = π / 4},

{White, Arrowheads[0.025], Arrow[{CyltoCar[R, θ, 1 z], CyltoCar[R, θ + δθ, z]}],

Stl@Text["Ω", {R + 0.1, 0, z - 0.1}]}];

G[1] = Graphics3D[{axes, rotationArrow}, BoxRatios → Automatic, Boxed → False,

Background → Black, Axes → None, PlotRange → range, ViewPoint → {2, 2, 1} ];

G[2] = With{α = 0.5, R = 0.6}, ContourPlot3Dα x2 + y2 + z2 ⩵ R2, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → False, PlotLabel → Stl["ρbulge(R, z)"],

ContourStyle → Directive[Yellow, Opacity[0.75], Specularity[White, 30]],

BoxRatios → Automatic, Boxed → False, Background → Black,

Axes → None, PlotRange → range, ViewPoint → {2, 2, 1};

(* This is a way of placing the circle indicating rotation *)

G[3] =

ParametricPlot3D[{0.2 Cos[ϕ], 0.2 Sin[ϕ], 1.1 }, {ϕ, 0, 2 π}, PlotStyle → White,

Axes → None, PlotRange → range, ViewPoint → {2, 2, 1}, Background → Black];

Show[G[1], G[2], G[3]]

Isobars and streamlines representing gravitational field
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geff = -
∂ΦG

∂R
+ Ω2 R 1


R -

∂ΦG

∂z
1

z

wA[1] =  -D[ΦG[R, z], R] + Ω
2 R, - D[ΦG[R, z], z]

R Ω2 - ΦG(1,0)[R, z], -ΦG(0,1)[R, z]

wA[2] = wA[1] /. ΦG → Function{R, z}, -
G M

R2 + z2


-
G M R

R2 + z23/2
+ R Ω2, -

G M z

R2 + z23/2


Clear[gEff, ΦEff];

gEff[R_, z_, Ω_, G_, M_] := -
G M R

R2 + z23/2
+ R Ω

2, -
G M z

R2 + z23/2
;

ΦEff[R_, z_, Ω_, G_, M_] := -
G M

R2 + z2
-
R2 Ω2

2
;

-Grad[ΦEff[R, z, Ω, G, M], {R, z}]

-
G M R

R2 + z23/2
+ R Ω2, -

G M z

R2 + z23/2


effective gravity is everywhere orthogonal to isobars
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Module{M = 1, G = 1, RMax = 0.5, zMax = 0.5, image = 350,

range = {{0, 0.5}, {0, 0.5}}, left, right, bottom, top, GG},

{{left, right}, {bottom, top}} = RotateStl["z"], -π  2, "", {Stl["R"],

Stl["Isobars and stream lines indicating direction of effective gravity"]};

GG[1] = With[{Ω = 2}, StreamPlot[gEff[R, z, Ω, G, M], {R, 0, RMax},

{z, 0, zMax}, StreamStyle → LightGray, PlotRange → range,

ImageSize → image, FrameLabel → {{left, right}, {bottom, top}}]];

GG[2] = With[{Ω = 2}, ContourPlot[ΦEff[R, z, Ω, G, M], {R, 0, RMax},

{z, 0, zMax}, PlotRange → range, ImageSize → image,

ContourShading → None, FrameLabel → {{left, right}, {bottom, top}}]];

Overlay[{GG[2], GG[1]}]
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Isobars and stream lines indicating direction of effective gravity

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

R

z

Isobars and stream lines indicating direction of effective gravity

Illustration of representative surface of constant angular momentum
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Module{O = {0, 0, 0}, x = {1, 0, 0}, y = {0, 1, 0}, z = {0, 0, 1},

range, axes, rotationArrow, streamLineArrows, CyltoCar, Axis, G},

CyltoCar[R_, θ_, z_] := CoordinateTransform[

"Cylindrical" → "Cartesian", { R, θ, z}];

Axis[OO_, P_, lab_, mult_, color_] :=

{Directive[color, Thick], Line[{OO, P}], Text[Stl[lab], mult P]};

axes = With[{mult = 1.2, color = White},

Axis[O, #〚1〛, #〚2〛, mult, color] & /@ {{x, "x"}, {y, "y"}, {z, "z"}}];

range = 1.2 {{-1, 1}, {-1, 1}, {-1, 1}};

rotationArrow = With[{R = 0.2, θ = π / 4, z = 1.1, δθ = π / 4},

{White, Arrowheads[0.025], Arrow[{CyltoCar[R, θ, 1 z], CyltoCar[R, θ + δθ, z]}],

Stl@Text["Ω", {R + 0.1, 0, z - 0.1}]}];

streamLineArrows = WithR = 0.5, θ = 3 π  8, z = 0.25, δθ = π  8,

{White, Arrowheads[0.025], Arrow[{CyltoCar[R, θ, z], CyltoCar[R, θ + δθ, z]}],

Arrow[{CyltoCar[R, θ, 0], CyltoCar[R, θ + δθ, 0]}],

Arrow[{CyltoCar[R, θ, -z], CyltoCar[R, θ + δθ, -z]}]};

G[1] = Graphics3D[{axes, rotationArrow, streamLineArrows},

BoxRatios → Automatic, Boxed → False, Background → Black,

Axes → None, PlotRange → range, ViewPoint → {2, 2, 1} ];

G[2] = With{α = 0.5, R = 0.6}, ContourPlot3Dα x2 + y2 + z2 ⩵ R2, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → False, PlotLabel → Stl["ρbulge(R, z)"],

ContourStyle → Directive[Yellow, Opacity[0.25], Specularity[White, 30]],

BoxRatios → Automatic, Boxed → False, Background → Black,

Axes → None, PlotRange → range, ViewPoint → {2, 2, 1};

G[3] = With{R = 0.5}, ContourPlot3Dx2 + y2 ⩵ R2, {x, -1, 1}, {y, -1, 1},

{z, -1, 1}, Mesh → False, PlotLabel → Stl["ρbulge(R, z)"], ContourStyle →

Directive[Lighter[Red, 0.5], Opacity[0.75], Specularity[White, 30]],

BoxRatios → Automatic, Boxed → False, Background → Black,

Axes → None, PlotRange → range, ViewPoint → {2, 2, 1};

(*streamLines = {Red, {0.2 Cos[ϕ],0.2 Sin[ϕ],1.1 }};*)

(* This is a way of placing the circle indicating rotation *)

G[4] =

ParametricPlot3D[{{0.2 Cos[ϕ], 0.2 Sin[ϕ], 1.1 }, {0.5 Cos[ϕ], 0.5 Sin[ϕ], -0.25 },

{0.5 Cos[ϕ], 0.5 Sin[ϕ], 0}, {0.5 Cos[ϕ], 0.5 Sin[ϕ], 0.25 }},

{ϕ, 0, 2 π}, PlotStyle → White, Axes → None, PlotRange → range,

ViewPoint → {2, 2, 1}, Background → Black];

Show[G[1], G[2], G[3], G[4]]
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Cylindrical geometry
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Module{O = {0, 0, 0}, x = {1, 0, 0}, y = {0, 1, 0}, z = {0, 0, 1},

axes, range, P, Q, ϕArc, refLines, CyltoCar, Axis, ArcArrow3D, G},

CyltoCar[R_, θ_, z_] := CoordinateTransform[

"Cylindrical" → "Cartesian", { R, θ, z}];

Axis[OO_, P_, lab_, mult_, color_] :=

{Directive[color, Thick], Line[{OO, P}], Text[Stl[lab], mult P]};

ArcArrow3D[R_, θS_, θF_, z_] :=

Arrow@TableCyltoCar[R, θ, z], θ, θS, θF,
π

64
;

axes = With[{mult = 1.2, color = LightGray},

Axis[O, #〚1〛, #〚2〛, mult, color] & /@ {{x, "x"}, {y, "y"}, {z, "z"}}];

range = 1.2 {{-0.1, 1}, {-0.1, 1}, {-0.1, 1}};

{P, Q} =

WithR = 0.8, θ = 3 π  8, z = 0.8, {CyltoCar[R, θ, z], CyltoCar[R, θ, 0]};

refLines = Black, Line[{P, Q}], Line[{O, Q}], Point[P], Text[Stl["P"], 1.1 P],

TextStl["z"],
P + Q

2
+ {0, 0.1, 0}, TextStl["R"],

Q

2
+ {0, 0, 0.1};

ϕArc = WithR = 0.4, θ = 3 π  8, z = 0, Black, Arrowheads[0.02],

ArcArrow3D[R, 0, θ, 0], Text"θ", CyltoCar0.7 R, θ  2, z;

G[1] = Graphics3D[{axes, refLines, ϕArc}, BoxRatios → Automatic,

Boxed → False, Axes → None, PlotRange → range,

ViewPoint → {2, 2, 1}, PlotLabel → Stl["cylindrical geometry"] ];

G[2] = With{R = 0.8}, ParametricPlot3D{{R Cos[θ], R Sin[θ], z}}, θ, 0, π  2,

{z, 0, 1}, Mesh → False, ColorFunction → "TemperatureMap", PlotStyle → Opacity[.25],

Axes → None, Boxed → False, ViewPoint → {2, 2, 1}, PlotRange → range;

Show[

G[

1],

G[

2]]
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Forces on a fluid element
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Module{O = {0, 0}, x = {1, 0}, y = {0, 1}, imageSize = 300,

P, axes, OP, FC, FG, range, pointP, pointM, Axis2D, G},

Axis2D[OO_, P_, lab_, mult_, color_] :=

{Directive[color, Thick], Line[{OO, P}], Text[Stl[lab], mult P]};

axes = With[{mult = 1.1, color = LightGray},

Axis2D[O, #〚1〛, #〚2〛, mult, color] & /@ {{x, "R"}, {y, "z"}}];

P = With[{r = 0.6, α = 1.5, ξ = π / 4}, {α r Cos[ξ], r Sin[ξ]}];

pointP = {PointSize[0.02], Point[P]};

pointM = {PointSize[0.03], Point[O]};

FC = Arrow[{P, P + {0.25, 0}}], TextStl["FC"],
2 P + {0.25, 0}

2
+ {0, 0.05};

FG =  ArrowP, P  2, TextStl["FG"],
P + P  2

2
+ {0, -0.05};

range = 1.2 {{-0.1, 1}, {-0.1, 1}};

G[1] = With{r = 0.6, α = 1.5},

ParametricPlot{{α r Cos[ξ], r Sin[ξ]}},

ξ, 0, π  2, PlotStyle → Black, Axes → None, PlotRange → range,

PlotLabel → Stl["forces on fluid element"], ImageSize → imageSize;

G[2] = Graphics[{axes, FG, FC, pointP, pointM, Text[Stl["M"], O + {0, -0.1}]},

PlotRange → range, ImageSize → imageSize];

Show[G[1], G[2]]

R

z

FG

FC

M

forces on fluid element
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